A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

Freeman

Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. J. Geophys. Res. Planets 121, 1865–1884 (2016). Article  ADS  Google Scholar  Grier, J. A. & Rivkin, A. S. Airless Bodies of The Inner Solar System (Elsevier, 2019). Reams, D. V. Solar Energetic Particles 2nd edn (Springer, 2021). Grün, […]

  • Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. J. Geophys. Res. Planets 121, 1865–1884 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Grier, J. A. & Rivkin, A. S. Airless Bodies of The Inner Solar System (Elsevier, 2019).

  • Reams, D. V. Solar Energetic Particles 2nd edn (Springer, 2021).

  • Grün, E., Zook, H. A., Fechtig, H. & Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Noguchi, T. et al. Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121–1125 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Noguchi, T. et al. Space weathered rim found on the surfaces of the Itokawa dust particles. Meteorit. Planet. Sci. 49, 188–214 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Matsumoto, T. et al. Surface and internal structures of a space-weathered rim of an Itokawa regolith particle. Icarus 257, 230–238 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Matsumoto, T. et al. Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering. Nat. Commun. 11, 1117 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Matsumoto, T. et al. Space weathering of iron sulfides in the lunar surface environment. Geochim. Cosmochim. Acta 299, 69–84 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, M. S. et al. Microchemical and structural evidence for space weathering in soils from asteroid Itokawa. Earth Planet. Space 66, 89–99 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Langenhorst, F. et al. Mineralogy and defect microstructure of olivine dominated Itokawa dust particle: evidence for shock metamorphism, collisional fragmentation, and LL chondrite origin. Earth Planet. Space 66, 118 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Burgess, K. D. & Stroud, R. Coordinated nanoscale compositional and oxidation state measurements of lunar space-weathered material. J. Geophys. Res. Planets 123, 2022–2037 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hicks, L. et al. Fe-redox changes in Itokawa space-weathered rims. Meteorit. Planet. Sci. 55, 2599–2618 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, M. S. et al. Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite. Icarus 319, 499–511 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, M. S. et al. The effect of progressive space weathering on the organic and inorganic components of a carbonaceous chondrite. Icarus 346, 113775 (2020).

    Article 

    Google Scholar
     

  • Matsuoka, M., Nakamura, T., Hiroi, T., Okumura, S. & Sasaki, S. Space weathering simulation with low-energy laser irradiation of Murchison CM chondrite for reproducing micrometeoroid bombardments on C-type asteroids. Astrophys. J. 890, L23 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lantz, C. et al. Ion irradiation of carbonaceous chondrites: a new view of space weathering on primitive asteroids. Icarus 285, 43–57 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Laczniak, D. L. et al. Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses. Icarus 364, 114479 (2021).

    Article 

    Google Scholar
     

  • Trang, D. et al. The role of hydrated minerals and space weathering products in the bluing of carbonaceous chondrites. Planet. Sci. J. 3, 68 (2021).

    Article 

    Google Scholar
     

  • Kitazato, K. et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science 364, 272–275 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sugita, S. et al. The geomorphology, color, and thermal properties of Ryugu: implications for parent-body processes. Science 364, eaaw0422 (2019).

    Article 

    Google Scholar
     

  • Morota, T. et al. Sample collection from asteroid (162173) Ryugu by Hayabsa2: implications for surface evolution. Science 368, 654–659 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Tatsumi, E. et al. Spectrally blue hydrated parent body of asteroid (162173) Ryugu. Nat. Commun. 12, 5837 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Brearley, A. J. & Jones, R. H. in Planetary Materials Reviews in Mineralogy Vol. 36 (ed. Papike, J. J.) C1 (Mineralogical Society of America, 1998).

  • Weisberg, M. E., McCoy, T. J. & Krot, A. N. in Meteorites and the Early Solar System II (eds. Lauretta, D. S. & McSween, H. Y. Jr) 19–52 (University of Arizona Press, 2006).

  • Yada, T. et al. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nat. Astron. 6, 214–220 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yokoyama, T. et al. The first returned samples from a C-type asteroid show kinship to the chemically most primitive meteorites. Science https://doi.org/10.1126/science.abn7850 (2022).

    Article 

    Google Scholar
     

  • Nakamura, E. et al. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective. Proc. Jpn. Acad. Ser. B 98, 227–282 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, T. et al. Formation and evolution of carbonaceous asteroid Ryugu: direct evidence from returned samples. Science https://doi.org/10.1126/science.abn8671 (2022).

    Article 

    Google Scholar
     

  • Ito, M. et al. Hayabusa2 returned samples: a unique and pristine record of outer Solar System materials from asteroid Ryugu. Nat. Astron. https://doi.org/10.1038/s41550-022-01745-5 (2022).

    Article 

    Google Scholar
     

  • Keller, L. P. & McKay, D. S. The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61, 2331–2341 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Noble, S., Pieters, C. M. & Keller, L. P. An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629–642 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Hayabusa Sample Library (Astromaterials Science Research Group, JAXA/ISAS, accessed 25th November, 2022) https://curation.isas.jaxa.jp/curation/hayabusa/index.html

  • Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ghiorso, M. S. & Gualda, G. A. R. An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib. Mineral. Petrol. 169, 53 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Tanbakouei, S. et al. Mechanical properties of particles from the surface of asteroid 25143 Itokawa. Astron. Astrophys. 629, A119 (2019).

    Article 

    Google Scholar
     

  • Bland, P. A. et al. Pressure-temperature evolution of primordial solar system solids during impact-induced compaction. Nat. Commun. 5, 5451 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rucinski, D. et al. Ionization processes in the heliosphere – Rates and methods of their determination. Space Sci. Rev. 78, 73–84 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Bürgi, A. Proton and alpha particle fluxes in the solar wind: results of a three-fluid model. J. Geophys. Res. 97, 3137v3150 (1992).


    Google Scholar
     

  • Keller, L. P. et al. Solar energetic particle tracks in lunar samples: a transmission electron microscope calibration and implications for lunar space weathering. Meteorit. Planet. Sci. 56, 1685–1707 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Matsumoto, T., Hasegawa, S., Nakao, S., Sakai, M. & Yurimoto, H. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa. Icarus 303, 22–33 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Harries, D. et al. Secondary submicrometer impact cratering on the surface of asteroid 25143 Itokawa. Earth Planet. Sci. Lett. 450, 337–345 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Okazaki, R. et al. Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution. Science https://doi.org/10.1126/science.abo0431 (2022).

    Article 

    Google Scholar
     

  • Lauretta, D. et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science 366, 1217 (2019).

    Article 

    Google Scholar
     

  • Rubino, S. et al. Space weathering affects the remote near-IR identification of phyllosilicates. Planet. Sci. Jour. 1, 61 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kitazato, K. et al. Thermally altered subsurface material of asteroid (162173) Ryugu. Nat. Astron. 5, 246–250 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Cloutis, E. A. et al. Spectral reflectance ‘deconstruction’ of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids. Icarus 305, 203–224 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Rubino, S. et al. Geometry induced bias in the remote near-IR identification of phyllosilicates on space weathered bodies. Icarus 376, 114887 (2022).

    Article 

    Google Scholar
     

  • Prince, B. S. & Loeffler, M. J. Space weathering of the 3-µm phyllosilicate feature induced by pulsed laser irradiation. Icarus 372, 114736 (2022).

    Article 

    Google Scholar
     

  • Hiroi, T., Pieters, C. M., Zolensky, M. E. & Lipschutz, M. E. Evidence of thermal metamorphism on the C, G, B, and F asteroids. Science 261, 1016–1018 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Vernazza, P. et al. Interplanetary dust particles as samples of icy asteroids. Astrophys. J. 806, 204 (2015). (10pp).

    Article 
    ADS 

    Google Scholar
     

  • Vernazza, P. et al. Different origins or different evolution? Decoding the spectral diversity among C-type asteroids. Astron. J. 153, 72 (2017). (10pp).

    Article 
    ADS 

    Google Scholar
     

  • Hamilton, V. E. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron. 3, 332–340 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ito, M. et al. The universal sample holders of microanalytical instruments of FIB, TEM, NanoSIMS, and STXM‑NEXAFS for the coordinated analysis of extraterrestrial materials. Earth, Planet Space 72, 133 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Watanabe, M. & Williams, D. B. The quantitative analysis of thin specimens: a review of progress from the Cliff-Lorimer to the new ζ-factor methods. J. Microsc. 221, 89–109 (2006).

    Article 
    MathSciNet 

    Google Scholar
     

  • van Aken, P. A. & Liebscher, B. Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L2,3 electron energy-loss near-edge spectra. Phys. Chem. Mineral. 29, 188–200 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Bourdelle, F. et al. Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2, 3 edges. Contrib. Mineral. Petrol. 166, 423–434 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Le Guillou, C., Changela, H. G. & Brearley, A. J. Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: implications for alteration conditions and H2 degassing of asteroids. Earth Planet. Sci. Lett. 420, 162–173 (2015).

    Article 
    ADS 

    Google Scholar
     

  • de la Pena, F. et al. Electron microscopy (Big and Small) data analysis with the open-source software package HyperSpy. Microsc. Microanal. 23, 214–215 (2017).

    Article 

    Google Scholar
     

  • Lerotic, M., Mak, R., Wirick, S., Meirer, F. & Jacobsen, C. MANTiS: a program for the analysis of X-ray spectromicroscopy data. J. Synchrotron Radiat. 21, 1206–1212 (2014).

    Article 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 

    Google Scholar
     

  • Price, M. et al. Comet 81P/Wild 2: the size distribution of finer (sub-10 µm) dust collected by the Stardust spacecraft. Meteorit. Planet. Sci. 45, 1409–1428 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Shu, A. et al. Cratering studies in polyvinylidene fluoride (PVDF) thin films. Planet. Space Sci. 89, 29–35 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Jehn, R. An analytical model to predict the particle flux on spacecraft in the solar system. Planet. Space Sci. 48, 1429–1435 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Takeuchi, A., Uesugi, K. & Suzuki, Y. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics. J. Synch. Rad. 20, 793–800 (2013).

    Article 

    Google Scholar
     

  • Matsumoto, M. et al. Discovery of fossil asteroidal ice in primitive meteorite Acfer 094. Sci. Adv. 5, eaax5078 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chan, T. & Vese, L. An active contour model without edges. In Proc. International Conference on Scale-Space Theories in Computer Vision (eds Nielsen, M. et al.) 141–151 (Springer, 1999).

  • Macke, R. J., Consolmagno, G. J. & Britt, D. T. Density, porosity, and magnetic susceptibility of carbonaceous chondrites. Meteorit. Planet. Sci. 45, 1231–1241 (2011).


    Google Scholar
     

  • Next Post

    Space10 proposes linking NFTs to furniture to encourage better care

    IKEA’s investigate lab Space10 has developed a principle for connecting a physical household furniture piece to an ever-evolving NFT tree, which “grows” as a result of acts of care to incentivise people to hold, mend and recycle their possessions. In Area10‘s speculative style and design project Carbon Banks, the household […]
    Space10 proposes linking NFTs to furniture to encourage better care